Alternated Hochschild Cohomology
نویسندگان
چکیده
In this paper we construct a graded Lie algebra on the space of cochains on a Z2-graded vector space that are skew-symmetric in the odd variables. The Lie bracket is obtained from the classical Gerstenhaber bracket by (partial) skew-symmetrization; the coboundary operator is a skew-symmetrized version of the Hochschild differential. We show that an order-one element m satisfying the zero-square condition [m,m] = 0 defines an algebraic structure called “Lie antialgebra” in [17]. The cohomology (and deformation) theory of these algebras is then defined. We present two examples of non-trivial cohomology classes which are similar to the celebrated Gelfand-Fuchs and Godbillon-Vey classes.
منابع مشابه
Hochschild Cohomology for Complex Spaces and Noetherian Schemes
The classical HKR-theorem gives an isomorphism of the n-th Hochschild cohomology of a smooth algebra and the n-th exterior power of its module of Kähler differentials. Here we generalize it for simplicial, graded and anticommutative objects in “good pairs of categories”. We apply this generalization to complex spaces and noetherian schemes and deduce two decomposition theorems for their (relati...
متن کاملHochschild Cohomology and Support Varieties for Tame Hecke Algebras
We give a basis for the Hochschild cohomology ring of tame Hecke algebras. We then show that the Hochschild cohomology ring modulo nilpotence is a finitely generated algebra of Krull dimension 2, and describe the support varieties of modules for these algebras.
متن کاملThe Bv Algebra on Hochschild Cohomology Induced by Infinity Inner Products
Abstract. We define a BV-structure on the Hochschild-cohomology of a unital, associative algebra A with a symmetric, invariant and non-degenerate inner product. The induced Gerstenhaber algebra is the one described in Gerstenhaber’s original paper on Hochschild-cohomology. We also prove the corresponding theorem in the homotopy case, namely we define the BV-structure on the Hochschild-cohomolog...
متن کاملOn the Hochschild Cohomology of Tame Hecke Algebras
In this paper we are interested in Hochschild cohomology of finite-dimensional algebras; the main motivation is to generalize group cohomology to larger classes of algebras. If suitable finite generation holds, one can define support varieties of modules as introduced by [SS]. Furthermore, when the algebra is self-injective, many of the properties of group representations generalize to this set...
متن کامل